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By Paul C. Simon

SUMMARY
/270>

The performance of a double-ramp side inlet was investigated with
various combinations of fuselage, ramp, and internal throat boundary-
layer removal at free-stream Mach numbers of 1.5 to 2.0.

The installation of inlet side fairings produced a 4-percent in-
crease in net propulsive thrust when the inlet was matched to a hypo-
thetical turbojet engine at a Mach number of 2.0. There was, however,
a concomitant large reduction In subcritical stability. The side fair-
ings were ineffective at Mach numbers of 1.5 and 1.8.

When a slotted throat bleed and ramp perforations were applied to
the inlet, an additional 4-percent increase in net propulsive thrust was
realized. No subecritical stability was observed at a Mach number of

250.

Increases in net thrust of 4 percent at Mach numbers of 1.5 and 1.8
were realized when the ramp boundary layer was bled through ramp and

' throat perforations. In addition, inlet stability range and diffuser-

exit total-pressure distortions were improved.

In each case investigated it was necessary to divert two-thirds or
more of the fuselage boundary layer to obtain maximum inlet performanciz

A A )
/o/(////v"v

Substantial improvements in side inlet, internal performance are dem-
onstrated, for example, in reference 1 by raising the inlet entirely out
of the fuselage boundary layer. Further gains were realized in refer-
ence 2 by bleeding off the external-compression-surface boundary-layer

INTRODUCTION
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air at the inlet throat. Reference 3 indicates that the stable mass-
flow range of an inlet could be extended if external-compression-surface
boundary-layer separation was prevented by the application of suction
through perforations in the compression surface.

The interrelation of these three methods of boundary-layer control
was studied in the NACA Lewis 8- by 6-foot supersonic wind tunnel at
free-stream Mach numbers of 1.5 to 2.0. The test configuration con-
sisted of a two-dimensional ramp-type side inlet mounted on & slender
body of revolution. Experimental results were recently published in
reference 4 for a 14° ramp inlet using a flush-slot throat bleed in com-
bination with a fuselage boundary-layer diverter system. The present
study evaluates the optimum net-thrust-minus-configuration-drag and
other inlet characteristics for a double-ramp (14° and 8°) inlet with
boundary-layer removal through flush slots or ramp perforations or both.

SYMBOLS
internal-bleed minimum exit area, sq in.

internal-bleed entrance area (perforations or throat slots or
both)

maximum frontal area of basic configuration at h/d = 1, 0.759
sq ft

inlet capture area, 19.51 sq in.

inlet throat area, 11.85 sq in.
configuration drag coefficient, D/qOAf
configuration drag, 1lb

adjusted configuration drag, 1lb

adjusted configuration drag of basic inlet (no internal-bleed
system) at h/8 = 1, 1b

internal thrust of turbojet-engine and inlet combination, 1b

ideal net thrust of typical turbojet engine (based on 100-
percent pressure recovery), 1lb

fuselage boundary-layer diverter height, in.

Msach number

820%
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m .
= main-duct mass-flow ratio, maln-dgcs iéss flow
"o o001l
P total pressure, Ib/sq ft
P static pressure, lb/sq ft
q,o free-stream dynamic pressure, % (POMg)’ lb/sq ft
\ velocity, ft/sec
wz diffuser-exit welght flow per unit flow area, referenced to
standard sea-level conditions
AD' incremental adjusted configuration drag, Dé - D', 1b
T2 m2 mp
A -~ stable mass-flow range, e~ \o
0 0/critical O/ minimum steble
AP/P2 total-pressure distortion at diffuser exit,
maximum rake total pressure minus minimum rake total pressure
area-weighted average total pressure
o] fuselage boundary-layer thickness, approi. 0.55 in.
p mass density
Y ratio of specific heats

Subscripts:

b basic inlet configuration: h/8 = 1, no inlet throat-bleed
system

0 free-stream conditions

2 diffuser total-pressure survey station, model station 85.0

3 diffuser static-pressure survey station, model station 99.2

APPARATUS AND PROCEDURE
A two-dimensional ramp-type external-compression inlet was mounted

beneath a body of revolution consisting of an ogive nose and a 10-inch-
diameter cylindrical afterbody downstream of model station 46.2. A
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segment of the cylinder was removed to form a flat approach surface to
the inlet. This body, the same as the one used in reference 4, is
illustrated in figure l(a). The double ramp used in this test had an
initial wedge angle of 14° and a second wedge angle of 22° (angles
measured from body axis), as shown in figure 1(b). These angles were
selected because the 140 single-ramp inlet of reference 2 gave a high
pressure recovery because of a stable second oblique shock, which was
generated by boundary-layer separation ahead of the terminal shock and
produced an additional 8° flow deflection at a Mach number of 2.0. The
present double-ramp compression surface was designed to achieve the
advantages of the same two-oblique-shock system of reference 2 without
the disadvantages of boundary-layer separation. The positions of the
ramps were chosen to place the compression shocks slightly ahead of the
inlet cowl lip. Configuration nomenclature, internal-bleed - minimum-
exit-area ratio (hereinafter called bleed-area ratio), external diverter
height ratios, and pertinent figure numbers of the seven configurations
investigated are presented in the following table:

Symbols Configuration Bleed- External | Figure
area ratio, | diverter
AB,i/Ai height
ratio,
n/s
S Solid-ramp inlet without 0 1 4(a)
side fairings
Sp | Solid-ramp inlet with side 0 1 4(a)
fairings
Tp | Throat-bleed inlet with 432 1, 2/3, | 4(c), (a),
side fairings and O and (e)
T Throat-bleed inlet without 432 1 4(r)
side fairings
Tp p Throat-bleed inlet with 471 1 4(g)
? side fairings and first
ramp perforated
P, |Perforated-ramp inlet with 464 1, 2/3, | 4(n), (1),
side fairings and 1/3 | and (j)
P Perforated-ramp inlet without .464 1 4 (k)
side fairings

Detailed drawings of the inlet configurations are shown in figures l(c),
(d), and (e), and photographs of configurations Te p and P are
2

F
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presented in figures 2(a) and (b), respectively. The inlet side fair-
ings extended from the lip of the cowl gides to the leading edge of the
ramp.

The external fuselage boundary-layer system consisted of a 40°-
included-angle wedge inserted between the fuselage and the inlet. A
range of fuselage boundary-layer diverter heights h of 1, 2/3, 1/3,
and O times the fuselage boundary-layer thickness & was available
for testing.

The throat boundary-layer removal system consisted of two sharp-
cornered flush slots (fig. 2(a)). Air drawn into these slots was ejec-
ted through openings in either side of the inlet cowl (see fig. 1(c)).

The variation of the internal-flow area of the diffuser is shown
in figure 3. The equivalent cone angle of the over-all diffuser was
4,3°, The rate of diffusion varied with distance and attained a max-
imum equivalent cone angle of 6° as shown by a comparison of the two
curves on figure 3. The model was connected to the support sting by
an internal strain-gage balance used to measure axial forces. Inlet
mass flow was varied by means of a remotely controlled plug mounted
independently of the balance.

Pressure instrumentation consisted of 24 total-pressure tubes and
six static-pressure orifices at station 85.0, six static-pressure ori-
fices at station 99.2, nine base-pressure orifices, and two chamber-
pressure orifices located in the model balance cavity.

The total-pressure distortion parameter AP/P2 was defined as the

maximum diffuser-exit total pressure minus the minimum total pressure
divided by the area-weighted average diffuser-exit total pressure. The
pitot tubes closest to the diffuser-exit wall were 6.8 percent of the
diffuser diameter from the wall surface.

Main-duct mass-flow ratio was determined from the average static
pressure at model station 99.2 and the known area ratio between that
station and the exit plug where the flow was assumed to be choked. The
one-dimensional diffuser-exit total-pressure recovery at model station
85.0 was calculated by an area integration of the measured pressures.
The forces resulting from the change in total momentum from free stream
to the diffuser exit and all base forces have been excluded from the
model force data.

Subcritical flow instability was determined by observing terminal-
shock oscillations in the schlieren viewer. Operation of the diffuser
in the buzz region was avoided to prevent model damage; however, for all
stable points, the amplitude of the static-pressure fluctuations at the
diffuser exit was less than 2 percent of free-stream total pressure.
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The model was tested at zero angles of attack and yaw and at Mach
numbers of 1.5, 1.8, and 2.0. At each external diverter height ratio -
and Mach number, main-duct mass-flow ratio was varied for several
internal-bleed areas. Reynolds number varied from 4x106 to 5x106 per
foot.

8207

The Mach numbers in front of the inlets were experimentally deter-
mined to be equal to free-stream Mach numbers.

RESULTS AND DISCUSSION
Inlet Performance

Inlet performance characteristics, consisting of diffuser-exit
total-pressure distortion AP/PZ, total-pressure recovery PZ/Po’ and

external drag coefficient CD’ are presented in figure 4. These data
are plotted as a function of main-duct mass-flow ratio mz/mo for -

several combinations of external and internal boundary-layer removal.
Lines of constant weight flow per unit diffuser-exit flow area (refer-
enced to standard sea-level conditions) W, are superimposed on the

figures for convenience in engine-inlet matching analyses. The solid
symbols repregsent the conditions of minimum stable mass-flow ratio
before the onset of buzz. An X has been placed on each pressure-
recovery - mass-flow curve to indicate the point of maximum thrust-
minus-~-incremental-drag ratio as determined from a variable-size inlet
matched to a hypothetical turbojet engine at all points on the curve.
A more detailed explanation and analysis of these points will be dis-
cussed later.

Solid-ramp inlet. - Figure 4(a) shows the effect of side fairings
on the performance of the solid-ramp inlet with an external diverter
height ratio h/B of 1. The only significant change with the addition
of side fairings was a 5-percent increase in critical mass flow with a
concomitant 79-percent reduction in stable mass-flow range at a Mach
number of 2.0.

Critical, subcritical, and minimum stable shock patterns for the
inlet without side fairings at a Mach number of 2.0 are shown in the
schlieren photographs of figure 4(b). The second oblique shock for the
critical case fell inside the cowl lip. The peak recovery condition
reveals that the glip line, emanating from the intersection of the first
oblique and the terminal shocks, has entered the inlet without causing
buzz. This also occurred for the case with side fairings. The minimum
stable shock pattern just prior to the onset of buzz is also shown. .
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Throat-bleed inlet. - The performance of the throat-bleed inlet
with side fairings (configuration TF) is presented in figures 4(c), (d),
and (e) for external diverter height ratios of 1, 2/3, and 0, respec-
tively, and various bleed-area ratios.

The variation in pressure recovery with mass-flow ratio of config-
uration S is superimposed on the data of figures 4(c) to (k) for refer-
ence. With the throat-bleed exit doors closed (AB / = 0) at a Mach

number of 2.0 and an h/8 of 1, the inlet stablllty range, critical
pressure recovery, and total-pressure distortions indicated a slight
improvement over configuration Sp (solid-ramp inlet with side fairings).
However, at all Mach numbers and external boundary-layer diverter
heights, when the bleed doors were opened, peak pressure recovery in-
creased and total-pressure distortions decreased with & concomitant
increase in configuration drag coefficient and decreases in mass-flow -
ratio and stable mass-flow range. Improvement in recovery and distor-
tion is the result of the ability of the throat-bleed system to remove
the separated ramp boundary-layer air caused by the terminal-shock -
boundary-layer interaction. The increase in critical drag coefficient
is due to the increase in quantity and method of spilling mass flow.
Reduction in stable mass-flow range is typical of inlets incorporating
throat bleed; however, the reason is not understood.

At a Mach number of 2.0 and an h/® of 1 (fig. 4(c)), the maximum
pressure recovery occurred at a bleed-area ratio AB e/At of 0.20. It
2

was estimated from the difference in critical diffuser mass-flow ratio
between configurations SF and TF that, at a bleed-area ratio of 0.20,

4 percent of the critical inlet mass flow was diverted through the
throat-bleed system during critical inlet operation. It is impossible
to estimate the bleed flow during subcritical operation, since spillage
occurs around the cowl 1lip at this condition. At external diverter
height ratios of 1 and 2/3, bleed-area ratios of between 0.10 and 0.20
produced near maximum recoveries at all Mach numbers. However, at an
h/® of 0 (fig. 4(e)) the amount of bleed necessary to obtain the maxi-
mum possible recovery was not established; the largest bleed area (35
percent) gave the highest recovery. This higher rate of throat bleed
was required, since all the fuselage boundary layer approaching the
ramp entered the inlet. Total-pressure recoveries were well below those
of configuration S (h/8 = 1) at all free-stream Mach numbers.

The removal of side fairings from the throat-bleed inlet at an
h/S of 1 resulted in a slight decrease in recovery and mass flow and an
increase in the stability range. These data are presented in figure
4(f) for Mach numbers of 1.8 and 2.0.

Figure 4(g) presents the performance of the throat-bleed inlet with
side fairings and first ramp perforated at an h/5 of 1 for various
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bleed-area ratios. Reference 3 shows that the stability range of an
axisymmetric two-cone nose inlet could be increased markedly by apply- -
ing suction through the latter portion of the first-cone surface. The
buzz was initiated by the separation incurred when the bow shock inter-
acted with the first-cone boundary layer. Since this case appeared
similar to the double ramp discussed herein, perforations were installed
and the boundary-layer air, which was drawn off the first ramp, was
directed downstream by means of reverse scoops shown In figures 1(d) and
2(a). (A baffle separated the ramp bleed air from the throat bleed air.)
Except for about a 5-percent increase in critical mass-flow ratio, all
inlet performance parameters at all Mach numbers were virtually unaf-
fected by the addition of perforations.

Perforated-ramp inlet. - Perforations were installed along the
entire ramp area, including the throat-bleed area of the previous con-
figurations (see figs. 1(e) and 2(b)). The performance of configuration
Pp (the perforated-ramp inlet with side fairings) is presented in fig-
ures ;(h), (i), and (Jj) for external diverter height ratios of 1, 2/3,
and 1/3.

Inlet stability was greatly improved at an h/S of 1 by the addi-
tion of perforations on the ramp and inlet throat when the bleed-exit
doors were closed. This was accomplished, however, at the expense of
distortion, mass flow, and pressure recovery. The improved stability
probably occurred because the high pressure behind the terminal shock
forced air out of the perforations ahead of the shock. The air exhaust
from the ramp perforations probably fixed the position of the boundary-
layer-flow separation. Reverse flow persisted when the bleed doors were
opened. Configuration P, offered no substantial improvement in inlet
stability range over configuration S at an h/S of 1. There was,
however, about a 2- to 4-percent increase in total-pressure recovery in
the Mach number range investigated, when the bleed-area ratio was set
at 0.35. The diffuser mass flow and total-pressure distortions were
about the same as for configuration S; however, the drag coefficient
did rise at a Mach number of 2.0 from a critical value of 0.14 to 0.15.
The primary effect of reducing the h/8 of the perforated-ramp inlet
was the reduction in critical mass flow at Mach numbers of 1.8 and 2.0,
as indicated in figures 4(h), (i), and (j). At a Mach number of 1.5
and an h/® of 2/3, the stable mass-flow range was increased from 20
percent of critical mass flow for configuration S to 35 percent (fig.

a(1)).

The performance characteristics of configuration P (perforated-
ramp inlet without side fairings) are presented in figure 4(k). Com-
parison of the data with configuration S indicates that slight improve-
ment in peak recovery and stable mass-flow range can be realized at all
Mach numbers. However, with ramp bleed of about 5 percent, the critical
mass-flow ratio was reduced from 0.88 to 0.83 at a Mach number of 2.0.

Q70T
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Schlieren photographs of configuration P for inlet conditions of approx-
imately critical and subcritical mass flow are shown in figure 4(1) at
a Mach number of 2.0. Oblique shocks, emanating from the perforations,
can be seen for the condition of approximately critical mass flow.
Boundary-layer-flow separation occurred suberitically, and an enlarged
view of the ramp surface for the subcritical condition reveals air
issuing outward from the ramp perforations. This may be the result of
high bleed-chamber pressure originating at the throat perforations,
which are subjected to high static pressure behind the terminal shock.
A method of maintaining positive suction to the perforations probably
would have extended the stable mass-flow range.

Propulsive Thrust

The effect of internal throat bleed and external diverter height on
the net-thrust-minus-incremental-drag ratio (F - AD')/Fb of the throat-

bleed inlet configuration is presented in figure S(a). This thrust
parameter represents the variance in optimum thrust-minus-drag from that
of the basic no-bleed configuration (configuration S, fig. 4(a)). The
thrust ratios were either optimum thrust ratio or meximum thrust ratio,
if sufficient bleed was not obtained to determine the optimum. The
thrusts were calculated for a typical turbojet engine assumed to be
operating at an altitude of 35,000 feet with maximum afterburner, and

at each Mach number the inlet and engine were matched over the mass-flow
range for each configuration and each test condition. External drag
coefficients were assumed to remain constant while drag was varied in
proportion to the changes in inlet size that would be required to accom-
modate the engine weight flow. The optimum ideal net-thrust-minus-drag
ratios (F - D')/Fn ; Tfor the solid-ramp inlet without side fairings
were 0.52, 0.53, and 0.54 at Mach numbers of 1.5, 1.8, and 2.0,
respectively.

The net thrust of the configurations with internal throat bleed at
each Mach number tested reached values greater than the basic configu-
ration at diverter height ratios of 2/3 and 1 (fig. S(a)). At an h/®
of zero, the (F - AD')/Fb remained well below 1 throughout the range
of bleed-door settings.

Thus, it can be concluded that, from a net-thrust viewpoint, an
h/B of about 1 is the most desirable. (Ref. 4 states that optimum
thrust can be maintained at an h/8 less than 1.) It is interesting
to note that at a Mach number of 2.0 and an h/8 of 1 (fig. 5(a)), a
gain in thrust of 6 percent was obtained by adding side fairings and
throat slots to configuration S, even when the bleed doors were closed.
Of this increase, 4 percent can be credited to the side fairings alone.
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The greatest gain in (F - AD')/Fb occurred at a Mach number of 2.0

where configuration TF P reach a value of 8 percent above that obtained
for configuration S. ~’

Figure 5(b) shows the net-thrust-minus-incremental-drag ratios for
the perforated-ramp inlets at the three Mach numbers investigated for
various bleed-area ratios and external diverter height ratios. Gains
in the net-thrust parameter up to 4 percent were realized at Mach num-
bers of 1.5 and 1.8, while at a Mach number of 2.0 the net-thrust ratio
was about 10 percent lower than the basic configuration at a bleed-area
ratio of zero and increased to a maximum value of 1.0 at maximum bleed-
door opening. The net-thrust ratio of the perforated-ramp inlet with
side fairings was, in general, several percent higher than that of the
perforated-ramp inlet without fairings. Configuration Pp was approx-

imately independent of h/® (fig. 5(b)) down to an h/8& value of 1/3.
At no condition did the net-thrust ratio of configuration PF with the

820%

bleed-exit doors closed equal the net-thrust ratio with bleed.

A bar graph is presented in figure 6 of the maximum net-thrust-
minus-incremental-drag ratio and the corresponding inlet performance
of all the inlet configurations tested. The highest value of
(F - AD')/Fb was selected from those inlets which were tested at three

different external diverter height ratios. The stable mass-flow range
A(mz/mo) was taken as the difference in mass-flow ratio between critical

mass flow and minimum stable mass flow. Configuration drag ratio
D'/Fn 5 is the ratio of the configuration drag (adjusted for changes
J

in maximum frontal area to accommodate the engine weight flow) to the
ideal net thrust of the typical jet engine at the appropriate free-
stream Mach number.

The throat-bleed inlets with side fairings produced gains in net-
thrust ratio from 2 to 8 percent over the basic solid-ramp inlet at all
three Mach numbers investigated. The largest gain was obtained with
configuration TF,P at a Mach number of 2.0, where the net-thrust ratio

was 1.08. This improvement was a direct result of increases in mass

flow and pressure recovery with a concomitant drop in adjusted config-

uration drag. Configuration TF p had no stable mass-flow range and the
J

inlet side fairings prevented the use of the schlieren system to ascer-
tain the point of boundary-layer separation. Total-pressure distortions
for all throat-bleed inlets were about 10 percent at all Mach numbers.

The perforated-ramp inlets were the only configurations tested -
that showed improvements in both thrust and stable mass-flow range.
This occurred at a Mach number of 1.5 and possibly at a Mach number of
1.8. At a Mach number of 2.0, the thrust ratic was equal to or less
than configuration S because of the reduction in mass flow. Diffuser
total-pressure distortions were improved at all Mach numbers.
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The performance of the configuration having the highest net-thrust-
minus-incremental-drag of reference 4 was selected for comparison and
is included in figure 6. This inlet had a 14° ramp angle, a 19° external
cowl angle, and a single flush slot in the throat. Throat and fuselage
boundary-layer control was varied in the same manner as for the config-
urations in this report.

Thrust ratios of 15 percent at Mach numbers of 1.5 and 1.8 and 9
percent at a Mach number of 2.0 greater than configuration S are indi-
cated. These peak values were obtained at external diverter height
ratios of 1/3, 2/3, and 1 at Mach numbers of 1.5, 1.8, and 2.0, respec-
tively. The lower D'/Fn,i of the 14° ramp inlet accounts for the high

(FH-AD‘)/Fb values at Mach numbers of 1.5 and 2.0. Although distortions

were in the order of 10 percent, the stable mass-flow range was under
0.18 at all Mach numbers.

SUMMARY OF RESULTS

The performance of a double-ramp side inlet with variations in
internal and external boundary-layer removal was evaluated in the Lewis
8- by 6-foot supersonic wind tunnel at Mach numbers of 1.5, 1.8, and
2.0. The following results were obtained:

1. The installation of inlet side fairings produced a 4-percent
increase in net propulsive thrust when the inlet was matched to a hypo-
thetical turbojet engine at a Mach number of 2.0. The stable mass-flow
range, however, was considerably reduced. Side fairings were ineffective
at Mach numbers of 1.5 and 1.8.

2. The application of throat bleed, ramp perforations, and side
fairings to the double-ramp inlet produced gains in thrust-minus-
incremental-drag of between 2 and 8 percent at Mach numbers from 1.5 to
2.0. At a Mach number of 2.0, however, the stable inlet mass-flow range
was reduced to zero.

3. The installation of perforations on the ramp and throat surface
caused reverse flow in the bleed chamber under the ramp during subcriti-
cal operation. Gains of 4 percent in thrust-minus-incremental-drag were
obtained at Mach numbers of 1.5 and 1.8 -with some improvement in stable
mass-flow range. Perforations were ineffective at a Mach number of 2.0.

4. Diffuser total-pressure distortions were reduced from about 20

to 10 percent of the average diffuser total pressure by the use of all
types of ramp boundary-layer control tested.
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5. Maximum inlet performance occurred with an external boundary-

layer diverter height to fuselage boundary-layer thickness ratio of
between 2/3 and 1.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, July 25, 1956
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Critical; mass-flow ratio, 0.88; total- Subcritical (peak recovery); mass-flow
pressure recovery, 0.84. ratio, 0.82; total-pressure recovery,
: 0.87

Subcritical (minimum stable); mass-flow

ratio, 0.64; total-pressure recovery,
0.84

C-42600

(b) Schlieren photographs of configuration S (solid-ramp inlet without side fairings)
at Mach number of 2.0. External diverter height ratio, 1.

Figure 4. - Continued. Performance characteristics of inlet configurations.




Total-pressure distortion, AP/P2
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Free-stream Mach number, 1.5 Free-stream Mach number, 1.8 I l | | q

Free-stream Mach number, 2.0
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8 L 28 16— L // ¥
. 18
Diffuser-exit weight / I I 2? 22 20 22 24 26 /
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"2 flow per unit area, 28 30 flow per unit area, 28| /
I I N ™ i st
T
.22 - —
‘\\\\\ \\\ I
.18 '\ I _
& S0 o
214
'10.4 .5 .8 7 .8 -4 .5 .6 .7 .8 .9 .6 .7 .8 .9 1.

Mass-flow ratio, mz/mo

c) Configuration Ty (throat-bleed inlet with side fairings). External diverter
gu. o)
height ratio, 1.

Figure 4. - Continued. Performance characteristics of inlet configurations.
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Solid symbols denote mlnimum
stable mass flow

N R T — — — Configuration S (external

diverter height ratic, h/6, 1)

T v - T T
Free-stream Mach number, 1.5 Free-stream Mach number, 1.8 Free-stream Mach number, 2.0

: I I 7,,_,/,£ SN IS R

d oY

<, Ei NP N
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Total-pressure distortion, AP/P2

W
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R
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|
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Total-pressure recovery, P2/PO

.18

Drag coefficlent, CD
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50 30 //
22
S Ja. -] 14 P
26 i 24 2%
28 ]
- 3/0 — 36
l ( 28 3
Diffuser-exit weight Diffuser—exit welght___ | . 26 _Diffuser-exit welght
flow per unit area, flow per unit area, 28 flow per unit area,
Wo Wo FO Wy
l -
& o) .\
b — I N
4 .5 .6 7.5 6 7 8 .6 7 .8 .9 1.0

Mass-flow ;atio, mg/ﬁo
(e) Configuration T, (throat-bleed inlet with side fairings). External diverter helght ratio, 0.

Figure 4. - Contlnued. Performance characteristics of inlet configurations.
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— ——Configuration S (external
diverter helght ratio, h/6, 1)
Free-stream Mach number, 1.8 Free-stream Mach number, 2.0

»
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X

Total-pressure distortion, AP/P2
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Total-pressure recovery, P2/PO
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flow per unit area, 30 flow per unit area, q
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7
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a
S -
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g " \
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.8 .9
Mass-flow ratlo, my/mg
(f) Conflguratlon T (throat-bleed inlet without side fairings). External diverter height ratio, 1.

Figure 4. - Continued. Performance characteristics of inlet conflgurations.
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18 L | +— 9 7 |
LA i T .// /7 |
YR | 8 |
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Wy flow per unit area, 30 flow per unit area, <28 0
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.24
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.20 K ] O \ S R 7 "1 - N I
.16 - - "1 B ol Sttt - - T
L _ S A S __ b - —
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Mass-flow ratio, mp/m,

(g) Configuration Ty p (throat-bleed inlet with side fairings and first ramp
>

perforated) .

Figure 4. - Continued.

External diverter height ratio, 1.

-

Performance characteristics of inlet configuratioms.
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(i) Configuration P
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(perforated-ramp inlet with side fairings).

o9 000 o 200 o e ee °
o o * ° o e o o
e o e o ee o [} ° e e
¢ e e o e o o [ X X
es soe o o o (X} LX)
NACA RM E56G09%s
B T T T T "Bleed-area
ratio,
-+ - Ay, /Ay
o 0
NS AR NS EUE S U AN SR _ _— 0 .30
[ .35
X Maximum net-thrust-mlnus-
s el - e - - -— - incremental-dray ratio,
(F - aD')/Fy,
I I N Solid symbols denote minimum
r oo stable mass flow
. = — Confiyurution 5 {external t
0 I S R diverter helght ratio, h/6, 1)!
- | - TTTTTOCOTT T T T ]
Freg-stream Mach number, 1.5 g Free-stream Mach Free-stream Mach number, 2.0 |
OSSR WU I . Lo _ 1o -
40 - - i
i
|
1.
/
/S
1 . m/):
! 30
| Diffuser-extt welpht %4 DIffuser-exit welght
«7 I flow per unit area, - ‘ flow per unit arca,
"o | ¥ | BEffuser-vait welght
I S G U — | ' [ riow per unlit arca, --
! | | | W
, 1 L | L | ,
5 ! Loobo S ‘ - _ I B 1ooloo
R - R
l | |
‘L _ . R R I
r
Y .
|
|
R |
' |
*’% Lo |
| i i
! !
- ‘ H
|
8 7. : 3

External diverter

Figure 4. - Continued. Performance characteristics of inlet configurations.
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(J) Configuration Pp (perforated-ramp iniet with side fairings). External diverter
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Figure 4. - Continued. Performance characteristics of inlet configurations.
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helght ratio, 1.

Figure 4. - Continued. Performance characteristics of inlet configurations.
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Net-thrust-minus-incremental-drag ratio, (F - AD')/Fb
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